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Abstract--The effect of variable properties on momentum and heat transfer is investigated applying an 
asymptotic method that had been used before with the thermal boundary condition qw = const. Though 
the changes are in the thermal boundary condition only it turns out that both cases are quite different in 
several aspects. As a main result it turns out that a method empirically used in both cases (property ratio 

method) is not uniquely valid in the Tw = const, case of this study. 

1. INTRODUCTION 

IN AN EARLIER study [1], the influence of variable 
properties on momentum and heat transfer has been 
determined for the thermal boundary condition of 
constant heat flux across the wall. In this study a 
regular perturbation technique was applied with the 
final results given in the form of the so-called property 
ratio method. This original empirical method ac- 
counts for the influence of variable properties by 
certain property ratios in the skin friction and Nusselt 
number results. For example the skin friction co- 
efficient f is 

f=f  ,q-,':-l" 
I.LR*J L,7*J J 

where fop is the friction factor for constant properties 
and subscripts w, B the wall and bulk conditions, 
respectively. Applying the perturbation technique the 
exponents np and n, were determined analytically from 
the basic equations. For constant wall heat flux the 
analytical results compare well with empirically deter- 
mined exponents [1]. 

The objective of the present study is an extension 
of the previous work now prescribing a constant wall 
temperature downstream of x* = 0, which is different 
from the wall temperature of the oncoming isothermal 
flow. 

The authors expected results that differ quantita- 
tively rather than qualitatively compared with those 
for q* = const. These expectations were backed by em- 
pirical findings. So, for example Kays and Crawford 
(p. 279 of ref. [2]) summarize with respect to the ex- 
ponents in the property ratio method: "Also there 
appears to be little effect due to different types of 
thermal boundary conditions". 

The subsequent study will show that this is not true. 

t Dedicated to Prof. Dr.-Ing. Klaus Gersten on the 
occasion of his 60th birthday. 

2. FLOW SITUATION;  BASIC EQUATIONS 

As in the q* = const, case laminar tube flow will be 
considered, which is fully developed in the constant 
property limit. There are two aspects of the 'fully 
developed' condition: hydrodynamically it means 
that the velocity profile remains unchanged through- 
out the whole pipe flow. Thermally fully developed 
refers to a flow in which the temperature profile in the 
T* = const, case meets a condition illustrated in Fig. 
1. Downstream of x * =  0, after a certain thermal 
adjustment zone all temperature profiles exhibit a 
similarity in the defect profile T* - T*, which decays 
exponentially with x*. It turns out that this condition 
holds asymptotically for x* ~ oo only, but for prac- 
tical applications it is a good approximation for finite 
x*. Further details will be given in Section 5 (equation 
(46)). 

For the flow under consideration the basic equa- 
tions are the Navier-Stokes equations for slender 
channels [3]. 

Neglecting viscous heating (Ma ~ 0) and buoyancy 
forces (Fr ~ 0) they read, nondimensionalized and 
transformed according to Table 1 

0 
( u l~r  (pry)= 0 P ) + r  (1) 

( du du) •p I 0 /' 0u'~ 
p u ~ + v ~  =-~+;~,~T~) (2) 

@ 
0 = - Or (3) 

PL uff~x+v or) - Prw r ~r \  cp Or,/ (4) 

with associated boundary conditions 

u = v = h = O  at r =  1 (5) 

~u ~h 
v ~r ~r 0 at r = O .  (6) 
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NOMENCLATURE 

cross-sectional area 
auxiliary functions, equation (71) 
auxiliary functions, equation (72) 
specific heat at constant pressure 
friction factor, equation (51) 
specific enthalpy 
dimensionless property, equation (10) 
exponents, property ratio method 
Nusselt number, equation (52) 
pressure 
Prandtl number, equation (7) 
wall heat flux 
radial coordinate 
pipe radius 
Reynolds number, equation (7) 
temperature 
reduced temperature, equation (13) 
velocity components 
mean velocity at reference conditions 

x axial coordinate. 

Greek symbols 
physical property 

e perturbation parameter, equation (12) 
r/ viscosity 
2 thermal conductivity 
A~ eigenvalue, equation (46) 
p density 
rw wall shear stress. 

Subscripts 
B bulk 
cp constant property 
w wall 
0, 1 zero, first order 
oo upstream conditions 

associated with the property ~. 

defect profile T~-T* 

r" i 

o, T'o~= I I T'-,= Ig ~T'-,= ma~-.~.:  
I I 

T~- T: 

hyclrodynomieolly D I  i hydrodynomicolly & thermolly x~'- 

thermol 
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zon~ 

FIG. L Development of the temperature profile, constant 
properties. 

All variables are nondimensionalized with quantities 
at the reference state 'w' far downstream (x* --, oo). 

The Reynolds and Prandtl numbers are define with 
properties at the reference state 

r/wc~w 
Rew pwU*~R P r w = - - T ~ ,  U * -  (7) 

~l* ' ~,  p'A*" 

The Prandtl number is left as the only parameter of 
equations (1)-(6) since the Reynolds number could 
be eliminated as an explicit parameter by the trans- 
formation according to Table 1. 

3. PHYSICAL PROPERTIES 

The physical properties involved in the problem are 
viscosity ~/, density p, thermal conductivity 2, and 
specific heat capacity Cp. As cp is not constant the 
energy equation is written in enthalpy h rather than 
temperature T. The relation between h and T is 

f; d h = c p d T  or h =  c p d r .  (8) 

All these properties are (more or less) pressure and 
temperature dependent so that they can be expanded 
as a Taylor series at the reference state 'w'. A general 
physical property ~t (here : r/, p, 2 or cp) then reads 

, ~ *  a~* 
c¢* = ~w + ~ w ( T * -  r* )  + 3 ~  w (p* -p* )  + "  (9) 

It turns out that only the temperature dependence is 
of practical importance if we impose the restriction 
of small Mach number, i.e. M a  ~ O. (For a detailed 
discussion see ref. [1].) 

Table 1. Dimensionless, transformed variables (*, dimensionless quantities) 

x r u v p T h p r/ 2 cp 

x*/R*Rew r*/R* u*/U** v*Rew/U*w , . , 2 , , , . , ,  , p - p ~ o / p w U ~  T - T w / T w  h - - h w / c ~ T w  p*/p* ~1"#1" 2"/2~, c;,~c~w* * 
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Table 2. Variation of physical properties with tem- 
perature (T* = 293 K) 

K o K. K~ K~ 

Air - 1.0 0.70 0.83 0.01 
Water -0.06 -7.37 0.75 -0.05 

With the dimensionless fluid parameter 

(r* 
K~ =- ~ OT*Jw (10) 

the Taylor series (9) then reads (pressure dependence 
neglected) 

ct - ~ = 1 + K ~ T + . . .  (11) 

In Table 2 values of K= are listed for air and water. 
With temperatures close to the reference temperature 
Tw* the linear approximation of ~ will be sufficient. 
The subsequent theory based on equation (11) is 
straightforward, see for example ref. [4]. 

4. ASYMPTOTIC  A P P R O A C H  

The perturbation parameter is defined as the start- 
ing point of  our asymptotic approach. The basic flow, 
which will be perturbed asymptotically, is that for 
constant properties. Obviously this flow situation pre- 
vails for vanishing heat transfer rates, (T~* - Tw*) --* 0. 

Therefore, our perturbation parameter e is 

T * - T *  
= (12) 

T* 

In what follows e is assumed to be small with e = 0 
for the constant property limit. Deviations from the 
constant property case are therefore due to non-zero 
values of e. By means of the regular perturbation 
technique this can be formulated systematically. 

As a first step equation (11) is rewritten as 

T T*-- Tw 
= 1 +eK~P+O(e2),  ~P- (13) 

e T*- -T*"  

According to this expansion all dependent variables 
of the problem are assumed to be of a similar form 

u = Uo+e(Knuln+Kvuio)+O(e: ) (14) 

v = Vo+e(K, vi,+Kovlo)+O(e z) (15) 

p =po+e(K,p, ,+Kpp,p)+O(e z) (16) 

+KcT,¢)+O(e2). (17) 

All variables with the index 0. like uo. vo . . . . .  describe 
the constant property solution, those with index 1. 
like u~. yr, . . . . .  are coefficients of the linear (in e) 
deviations according to the temperature dependence 
of the physical properties. 

The corresponding sets of equations are derived 
from the basic equations (1)-(4). After inserting 
expansions (13)-(17) terms of equal magnitude (eKe)" 
with n = 0. 1 and ~ = p, r/, 2, cp are collected. 

Zero-order system (n = O, constant properties) 

OUo 1 0 
0--x- + -r Or (rv°) = 0 (18) 

Ouo Ouo Opo 1 o ( Ouo~ 
U°~x +v° Or = -- O--x+-ffrtr~r-r (19) 

Opo 
0 = -  0--r- (20) 

OTo Oi'o 1 1 o [ O~ro'~ 
,o~£+VoW=,,r~ r0r\rW). (21) 

First-order system (n = 1. linear deviations) 

Oul~ 1 O 
O---x- + - -r Or (rv,.) = 0 (22) 

OUo OUl. OUo OUl, Opt, 
U l l l  O~'X "~ U o ~ x  + V l rl ~-r "~ V ° ~r -~ O x 

1 O (  ( ~  ~_rO)) + r & r + ~v0 (23) 

0p l~ (24) 
0 =  Or 

0T 0 0 7"~lr/ 0T 0 OTI~ 
uJq-OX-x + U ° ~ x  +vl"~-r +v° Or 

1 I O (rO~,.~ 
- t'rw 7 ~ k ~ ; / /  (25) 

Ou~ e 1 0 
~ x  + -r --Or (rv iv) 

=  26, 

0u0 0ulp 0Uo 0ulp 0pl, 
u l p ~ -  x + U o - ~ -  x + v t p - ~ -  r +Vo ~r  = 0x 

+ ; ~ r  -fot,~o~+~oN) (27) 

Oplp (28) 
0 =  0r 

0To 0Tip OTo OTt~ 
u,.TU +UoTx-x +v,.Tr-r +Vo ~r 

1 1 0 { 0T,, '~ _ /" 02F 0 OTo'\ 
= S,r,, 7 ~ t,r--b--,)- ro I ~,o-~--+,o W , ) ( 2 9 )  

0Tlx 0Ttx 
Uo--~- x +Vo 

1 1 0 (r (OT,z  - OTo'\'\ 
--Prw r Or\ \ Or + T ° ~ - r ) )  (30) 
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Uo\ Ox + T ° ~ x / t + v ° \  Or +T° ~r)  

_ 1 l a , ( r ~ L ~ "  ] 
Prw r ar \ ,~r / "  

Energy equations (21), (25) and (29)-(31) are rewrit- 
ten in temperatures Tg. Evaluating equation (8) with 
£ =h/E for this purpose gives 

/7~ = 7~ with i = 0, It/, lp, 12 (32) 

/7,c = T,~ + ~ ~'~. (33) 

The associated boundary conditions at r = 0, 1 and 
x >/0 from equations (5) and (6) are 

Ui=Vi=7"~=O at r =  1,x~>0 1 

Ou~ 07~j 0 I vi= c~ - =  c ~ = O  at r O,x~> 

i = 0 , 1 q ,  lp j = 0 , 1 q ,  lp, 12,1c. 

The initial conditions at x = 0 are 

Uo=2(1--r z) 

Ulq ~ 0 

Ulp ~ - - U  0 

v i = 0 ;  i = 0 , 1 r / , l p  

~p, 
- 8 

Ox 

•Pi ~ = 0 ;  i =  l r / , lp  

7~j=0;  j =  lr / , lp,  12,1c. (43) 

The zero-order initial conditions (36), (39) and (40) 
hold since the constant property flow is hydro- 
dynamically fully developed for all locations x. The 
zero-order temperature condition (42) holds since 
the upstream flow (x ~< 0) is an isothermal flow at 
T* = T* uninfluenced by the temperature jump at 
x = 0 .  

For  the same reason all first-order initial conditions 
are zero with the exception of equation (38), which 
is nonzero as a consequence of our choice of reference 
state.With 7"0 = 1 the density is p = 1 +eKp+O(e 2) at 
x = O. Inserting this into the integral condition of 
constant mass flux 

5. SOLUTIONS 

There are five sets of linear (with the exception of 
equation (19)) partial differential equations and their 

(31) corresponding boundary and initial conditions. 
One for constant property flow (zero order) : equa- 

tions (18)-(21) together with equations (34)-(36), 
(39), (40) and (42). 

Four for linear deviations with respect to e, (first 
order), i.e. one set for each of the four physical prop- 
erties q, p, 2 and ~.  All equations, boundary and 
initial conditions can easily be collected from equa- 
tions (22) to (43) according to the appropriate sub- 
scripts. 

The common solution procedure for the constant 
property energy equation is that of separation of vari- 
ables which reduces the governing differential equa- 

(34) tion (21) to the Sturm-Liouville type. The solution is 
then obtained in the form of an infinite series expan- 

(35) sion in terms of eigenvalues and eigenfunctions, see 
for example p. 100 of Shah and London [5] 

To = ~ Co.To.(r) exp [-A~x/Prw] (45) 
n - -  I 

where Co. are constants and A. the corresponding 
(36) eigenvalues with respect to the eigenfunctions T0,- For  

x ~ 0o the first term of the infinite series is dominating 
(37) so that the downstream limit of equation (45) reads 

(38) 7"o = CoiTo,(r)exp[-A2x/Prw]'C°' = 1.4764 (46) 
'A~ 3.6568. 

(39) 
Our first approach to the first-order equations was 
based on the expectation that the exponential x- 

(40) dependence in equation (46) would be carried to the 
higher order equations. We therefore assumed higher 
order solutions of the general form 'function of r' 

(41) times exp [-A~x/Prw], for example 

(42) u,, = a,,(r) exp [ -  A~x/Prw]. (47) 

Actually it is a necessary condition for constant 
exponents in the property ratio method that the first- 
order velocity functions u t,, u tp . . . .  are of this general 
type (see equation (69) below). 

It turned out that this only holds for large Prandtl 
numbers (asymptotically for Pr~ ~ ~ ,  see Section 5.2 
below). We therefore solved all equations in a com- 
pletely numerical approach. Based on these numerical 
solutions we return to our first attempt and try to 
interpret its failure by physical arguments in Section 
5.2. 

One consequence should be mentioned here: con- 
stant exponents in the property ratio method (in con- 
trast to the qw = const, case) do not exist for arbitrary 
Prandtl numbers! 

l 
" I 

2 pur dr = 1 (44) 
o 

immediately provides initial condition (38). 

5.1. Completely numerical approach 
The zero-order (constant property) flow solution is 

well known in its analytical form 

u 0 = 2 ( l - - r 2 ) ;  v 0 = 0 ;  Opo/~X=--8. (48) 
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I 
Fro. 2. Details of the net rectangle for the Box scheme 

difference equations. 

Table 3. Analytical and numerical results for u~. at x/Pr = 3, 
thermal boundary condition : q, = const. 

Analytical Percentage 
r equation (49) Numerical deviation (%) 

0.0 0.5455 0.5449 0.1 I 
0.2 0.4544 0.4538 0.13 
0.4 0.2216 0.2212 0.18 
0.6 -0.0397 -0.0399 0.50 
0.8 -0.1689 -0.1690 0.06 
1 . 0  0.0 0.0 - -  

All other equations, the zero-order energy equation 
(21 ) and all first-order equations, equations (22)-(31), 
were solved by the so-called 'Box scheme' method 
[6]. This method is implicit with respect to variations 
normal  to the tube axis and second-order accurate in 
all variables on arbitrary non-uniform nets. Though 
it was originally applied to boundary  layers it is easily 
transferred to the tube flow problem. 

There have been no stability problems (actually the 
scheme is claimed to be unconditionally stable) but  
in certain situations slight oscillations around the 
smooth solution occurred. They could be suppressed 
completely by a very simple ' trick' first proposed by 
Wickern [7] and afterwards successfully applied to a 
great number  of different flow situations. It is shortly 
explained in Fig. 2. In the conventional Box scheme 
the differential equations are approximated by cen- 
tring about  the midpoint  of each box, point  C in Fig. 
2. As a consequence you easily get oscillations in the 
x-directions as may be illustrated by the v-velocity 
which should be zero for all x in fully developed flow. 
If, by mistake, v is nonzero at x~, say v ÷, the differential 
equation is nevertheless fulfilled by its difference 
approximation, ifv = - v + at & +  Ax, since the central 
difference v = ½(v + + ( -  v+)) = 0! This problem is cir- 
cumvented by shifting the central point  from C to C'  
(see Fig. 2). Now v = 0 is enforced at x~+Ax and no 
oscillations occur. Nothing has to be changed in the 
formal system if one proceeds with the following two 
steps. (1) Choose a box of twice the x-step size, 2Ax 
in Fig. 2. This gives results at xt+2Ax.  (2) Take 
the mean average of all quantities at x~ and x~+ 2Ax, 
which provides the unknown quantities at x~+ Ax. 

In addition to this procedure the first step out of 
x = 0 was accomplished by an analytical Leveque-like 
step, see for example Worsoe-Schmidt [8]. 

As a test case which could also be used to find the 
proper grid sizes we could refer to the analytical results 
for the qw = const, case in ref. [1]. The downstream 
limit (x ~ oo) for u~,, cf. equation (14), for example 
reads [1] 

Ul~ = T~j(--2r6+ 12r 4 -  13r2+3) ;  qw = const. 

(49) 

Various test calculations showed that grid size inde- 

pendence (variations of typical, selected quantities 
smaller than 10 -4 ) is given for 

Ar ~< 0.02; Ax ~< 0.01Prw. (50) 

In Table 3 the numerical results at x/Pr = 3 are com- 
pared with those according to equation (49). Devi- 
ations are less than 0.5% which we decided to tolerate 
since the analytical results hold for x ~ m whereas 
the numerical results were found at x/Pr = 3 after 300 
steps in the x-direction. 

Applying this numerical method to the Tw = const. 
case under  consideration provides us with the func- 
tions To, TI~, u~,  v~ all x and r dependent with the 
Prandtl  number  as a parameter. To avoid extensive 
data documentat ion we only present the data for 
x ~ oo (fully developed flow) incorporated in the 
exponents of the property ratio method- -as  far as it 
is possible to do that. 

In  the following we show how this can be ac- 
complished. 

First Newton's law z* = rl*(Ou*/Oy*)w and Fourier's 
law q* = -2*(OT*/Oy*)w are written in dimension- 
less form bearing in mind that O/Oy*=-O/Or*, 
see Fig. 1 for the coordinates y* and r*. The skin 
friction and heat transfer relations in terms of f and 
Nu, respectively, are 

2~* _ 2 0 u  
f ~-" * * 2  - -  pwU~ Or w Re~ 1 (51) 

2q*wR* - - 2  07"~ i 'ff '  (52) 
Nu =- 2w(Tw- T,)  Or w • * * 

Next 

u = Uo+S(K~u,n+Kpuip)+O(s2), 7"= 7"o+... 

as well as an appropriate expansion for 2PB will be 
inserted into equations (51) and (52). With ~PB accord- 
ing to equation (17) 

~PB = 2P.o + s(K,7~m, + Kp]Pmp + Ka ]P,I~ 

+~7~.,c) + o(d) (53) 

the asymptotic results for f and Nu follow immedi- 
ately. They can be written in a very clearly arranged 
form if they are referred to their constant  property 
limits fop and Nu~p (cf. equations (51) and (52)) 



1912 H. HERWIG et al. 

f~  Rew = --2 0u° O r .  = 8  

NU~p = - 2 OT° - ~ r  wTB01 = Nucp(er,). 

The final results are 

f Rew 
( f  Rew)~ 1-s(K'A~+K°Aa)+O(e2); 

1Ou,  
A = = - - ~  Or w; a = q , p  

Nu 

Nuep 

(54) Va*? L~J -= ~" = [1 +~K3~.o 

+O(e~)] ¢ = 1-eKj'~ofl+O(e 2) (66) 
(55) 

the property ratio formulae in their asymptotic ver- 
sions are 

= 1 +~(K,B,+KoBo+KaB~+K~B~)+O(s ~) 

Or w 7~m= 

~ ' =  O7~o :~.o ; 
Or . 

(56) 

a=~,p ,2 ,  c. 

(57) 

The bulk temperatures TB0 and 7~m= in equations (56) 
and (57) immediately follow from the definition of h'B 

[in = pu,qr dr (58) 

together with the enthalpy/temperature relations (32) 
and (33). Inserting p = p 0 + . . . ,  u = u 0 + . . ,  and 
/~ = $ 0 + . . .  into equation (58) we obtain 

= 2f0 ~ /~B0 u07~0 r dr (59) 

TBl~ = (Toul.+UoI'ln)rdr ( 6 0 )  

Trap = 2 [To(uol'o+ulo)+UoI'u]rdr (61) 

= 2fo 1 1"m~ uoTur dr (62) 

1 - 2  f 
1 

~Pm, -- :T~0+2 (UoI'.c+~UoI'2o)rdr. (63) ! 
J0 

From the final results, equations (56) and (57), we 
find the exponents of the property ratio method by 
comparing these equations with the property ratio 
formulae 

f Rew (~l;'~ (p;,'~ 
( f  Rew)~v \q* l \p*,/ (64) 

* ~ * p * 2 * c - ( .=T ? : T  
N ~ c p  * * * * " 

f Rew l_e(n,K,~.so+noKp~,no)+O(e2 ) 
( f  Rew )~p 

(67) 

Nu 
Nucp 

(65) 

Incorporating the following expansion for a general 
property c~* : 

- -  = 1 - ~ ( m . K . ~ B 0  + mA:o ~B0 

+m~Ka1"Bo +rncKcl'~o)+O(t2). (68) 

Comparing equations (64), (67) and (65), (68), respec- 
tively, provides us with the exponents of the property 
ratio method (for a detailed discussion of higher order 
effects see ref. [1]) 

n==4Tno Or w w i t h a = r / , p  (69) 

m= = 7~o 07~o _ w i t h  = = r / , p ,2 , c .  (70) 

Or w TB0 

As mentioned before not all exponents n=, m= turned 
out to be constants for a fixed Prandtl number in 
the limit x--* oo. For  Prandtl numbers above about 
Prw = 0.5 all are constants. Below a Prandtl number 
of about 0.5 the exponents n~, m, and no, rnp are x- 
dependent, the stronger the lower the Prandtl number 
is. 

In Table 4 the exponents are listed for Prandtl num- 
bers greater than Prw = 0.5. Comparing them with the 
qw = const, case in ref. [1] shows that they all have the 
same sign in both cases and most of  them differ by 
less than about 20%. (For comparing n,, n o and ma 
note that the definitions of the exponents must be 
rearranged according to the definitions of fl and 37u 
in ref. [1].) 

For  Prandtl numbers below about Pr = 0.5 the 
numerical results showed a decreasing tendency for 
constant values of the exponents n~, rn,, n o and 
rn o in the downstream limit x--* oo (which for all 
other exponents was reached numerically at about 
x/Prw = 3). In Fig. 3 the exponents n, and m~ are 
shown for decreasing Prandtl numbers, those for the 
density (n o, rap) exhibit the same trends. 

As a consequence we must conclude that the 
property ratio method--which assumes x-indepen- 
dent exponents--fails for Prandtl numbers below 
Pr, ~ 0.5 in the Tw = const, case. From an asymptotic 
point of view things are even more restrictive, since 
the property ratio method only holds in the limit of 
Prw ~ oo asymptotically as we will try to verify in the 
following section. 



The effect of variable properties on momentum and heat transfer in a tube with constant wall temperature 1913 

Table 4. Exponents inthe property ratio methodfor T~=const., equations 
(69) and (70) 

Prw n r np m r mp m2 me 

~oo --0.4191 1 .0000 --0 .1225 0.3286 
I00 --0.4197 0 .9972  --0.1228 0.3277 
10 --0.4262 0 .9720  -0.1253 0.3196 
5 --0.4329 0 .9425 --0.1282 0.3102 
2 -0.4554 0 .8467 --0.1376 0.2788 
1 --0.5014 0 .6597 --0.1569 0.2149 

0.7 -0.5524 0 .4610  --0.1786 0.1435 
0.5 - -0 .6475 0 .1073 --0.2196 0.0097 

T T 
- 0.7743 0.2743 

For low Prandtl numbers the influence of variable 
properties cannot be represented by constant ex- 
ponents, so that the property ratio method is not 
adequate. Instead one should go back to the final 
results (56) and (57), respectively, which for con- 
venience will be rewritten as 

f Rew 
( f  Re~)cp = 1 + e ~ K,A= (x, Pr , )  + 0(~ 2) ; 

A= according to equation (56) (71) 

Nu 
Nucp 

= 1 + e ~  K,B=(x, Pr.) + O(e 2) ; 

B= according to equation (57). (72) 

0 1 2 3 /, 

f ~=-3 

" . .  ..... • . . . . . . . .  L .... 0.3 

................ o22" 
-3 

x/Pr 

l'l.fl 

0 1 2 3 #+ 5 
0 

_ Q,¢. 

- o ,  "" t 13 

-0.8 " ' ~ ' " ' "  .~ 

'""" ..... 0,~5 

-1.2 x/Pr 
FI¢~. 3. Property ratio exponents nr, m r for Prandtl numbers 

Pr, <. 0.5. 

In Fig. 4 the auxiliary functions A= and B= are given 
for the small Prandtl numbers, Pr = 0.1, 0.05, 0.01. 
Those for B~ and Bc collapse for all Prandtl numbers. 
(A careful study of this phenomena leads to the fact 
that m~ and mc are constants for all Prandtl numbers 
and x ~ ~ in contrast to what holds for t/ and p. 
The reason is that there are no first-order momentum 
equations for 2 and cp, see also Table 4.) 

5.2. Separation o f  variables approach 
At the beginning of Section 5 we mentioned our 

first assumption that the zero-order x-dependence of 
the temperature To is carried to the higher order equa- 
tions. This assumption is supported by equation (69) 
for example. The exponents n~ and n, can be inde- 
pendent ofx  only if ul~, ulp exhibit the same x-depen- 
dence as 2Pa0, i.e. exp [ - A ~ x / P r , ] .  

As an example we will illustrate the determination 
of n 7 based on the assumption of a unique x-depen- 
dence of all zero- and first-order quantities. According 
to this approach we assume (A~ = 3.6568) 

u,, = tilT(r) exp [ - A ~ x / P r , ]  (73) 

v17 = vl.(r)  exp [ - A ~ x / P r . ]  (74) 

0p ,7 = (~, exp [ -  AZx/Prw]. (75) 
Ox 

Inserting equations (73)-(75) together with equation 
(46) for 2r 0 into the first-order momentum equation, 
equation (23), results in an ordinary differential equa- 
tion for ~717(r) 

( _  2A~'~ [- ~_r~r.) L(I _r2)6l~+2forTrdr } 
= C . + [ r a ; . - - 4 C o , r ' f o . l ' l r .  (76) 

Here a prime denotes a derivative with respect to r, 
the integral on the left-hand side comes in through 
continuity equation (22). The boundary conditions 
a r e  

u l T = 0  a t r = l  (77) 

O6,7/Or = 0 at r = 0. (78) 
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FIG. 4. Auxiliary functions A,, Ap and B,, Bp, B~, B,. ; see equations (71) and (72). 
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The constant (:], is determined through the integral 
condition of the constant mass flux which in its asymp- 
totic form imposes the condition 

/ ~ l , r d r  = 0 (79) 

on the velocity ti],. 
Solving equation (76) by a standard Runge-Kutta 

technique for ordinary differential equations is 
straightforward as soon as a specific Prandtl number 
is fixed. With t71~(r) we can immediately calculate n, 
according to equation (69). In Fig. 5 the results are 
compared with those from the completely numerical 
approach of the previous section. For moderate and 
large Prandtl numbers (Pr >1 0.5) the agreement is 
very good. 

For Prw = 10, for example, n¢ differs by less than 
0.2% (n, = -0.4262 from the numerical approach 
and n, = -0.4254 based on the solution of equation 
(76)). 

For small Prandtl numbers assumptions (73)-(75) 
fail completely which result in a somewhat curious 
solution of equation (76) with a sequence of singular 
points for decreasing Prandtl numbers. From our 

numerical results in Section 5.1 we known that for low 
Prandtl numbers u~, does not behave according to 
assumptions (73)-(75). But what is the physical 
reason for that? 

The first-order momentum equation (76) explicitly 
shows the main Prandtl number influence. It comes 
in through the inertia forces on the left-hand side 
of the momentum equation. For moderate to high 
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5. Property ratio exponent n,: - - - ,  separation 
approach ; O, numerical approach. 
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Prand t l  numbers  the inert ia  forces are small  compared  
with the pressure and  viscous forces on  the right- 
hand  side. F o r  an  infinite Prand t l  n u m b e r  they vanish  
completely since they are of  the order  of  O(Pr~ ~). 
Obviously the f irst-order solut ions are of  the assumed 
type (73)-(75) as long as the balance of  forces is tha t  
between pressure and  viscous forces, wi th  negligible 
inert ia  forces. The solut ion for Ul, is no longer the 
p roduc t  of  an  x- and  r -dependent  par t  when  inert ia 
forces have to be accounted  for, obviously because 
inert ia  forces c a n n o t  be cons tan t  over  the cross- 
section o f  a pipe. They are zero at  the wall and  non-  
zero away f rom the wall. 

F r o m  these considera t ions  we conclude tha t  strictly 
speaking cons tan t  proper ty  exponents  only exist in 
the l imit Prw 1 = 0, i.e. for  an  infinite P rand t l  number .  
Fo r  Prand t l  number s  above  0.5 the influence of  the 
inert ia forces is small  enough  tha t  the exponents  are 
no t  effected within the accuracy limits of  Table  4 or 
Fig. 5. So for  practical  appl icat ions they can be used 
as 'near ly cons tant ' .  

6. CONCLUSIONS 

In this s tudy we extended a m e t h o d  to account  
for  variable  proper ty  effects to the thermal  bounda ry  
condi t ion  T* = const.  In  an  earlier study laminar  
tube flow was invest igated for  the bounda ry  condi t ion  
q* = const.  In  tha t  study a wel l -known empirical  
method,  the proper ty  rat io  method,  was established 
as an  analyt ical  m e t h o d  [1]. 

Now it tu rned  out  tha t  this me thod  can be applied 
in the T* = const, case only under  certain conditions.  

Fo r  pract ical  appl icat ions it may be a useful me thod  
with Prand t l  numbers  above  abou t  0.5. Fo r  smaller  
Prand t l  numbers  it is no  longer adequate  and  for  
Prand t l  numbers  as small as those for l iquid metals  
(Pr ~ 10-3) it fails completely.  

This  conclusion could only be d rawn  on  the basis 
of  an  analyt ical  analysis of  the empirical  method.  
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EFFET DES PROPRIETES VARIABLES SUR LE TRANSFERT DE QUANTITE DE 
MOUVEMENT ET DE CHALEUR DANS UN TUBE A TEMPERATURE PARIETALE 

CONSTANTE 

R~smn~-On ~tudie l'effet des proprirt~s variables sur le transfert de quantit6 de mouvement et de chaleur 
en appliquant une mrthode asymptotique drj~i utilisre avec la condition limite thermique qw = const. Bien 
que les changements sont seulement dans les conditions aux limites, les deux cas sont tr~s diffrrents sous 
divers aspects. La m&hode empirique utilis~e dans les deux cas (m~thodes du rapport de propri&~) n'est 

pas uniquement valable dans le cas Tw = const, de cette &ude. 

DER EINFLUSS VARIABLER STOFFEIGENSCHAFTEN AUF IMPULS- UND 
W~RMEOBERTRAGUNG IN EINEM ROHR MIT KONSTANTER 

WANDTEMPERATUR 

Zusammenfassung- -Mit  einer asymptotischen Methode, die bisher bei konstanter W/irmestromdichte 
verwendet worden ist, wird nun der Einflul3 variabler Stoffeigenschaften auf Impuls- und W/irme- 
/ibertragung bei konstanter Wandtemperatur untersucht. Obwohl die ,~nderungen nur in der Wahl der 
thermischen Randbedingungen bestehen, ergibt sich, dab beide Ffille in unterschiedlicher Hinsicht sehr 
verschieden sind. Als ein Hauptergebnis erweist sich, dab eine in beiden F/illen empirisch genutzte Methode 
(Methode der Stoffwert-Verhfiltnisse) in dem hier betrachteten Fall Tw = const, eindeutig nicht giiltig ist. 

BJIH,.qHHE HEPEMEHHblX XAPAKTEPHCTHK HA HEPEHOC HMIIYJIbCA H TErI.IIA B 
TPYBE C IIOCTO,,qHHOI~I TEMIIEPATVPOITI CTEHOK 

A I I I o T a m m - - - - C  HOMOII~IO acnMirroT~ecxoro Mero~ta, HCROJIb3OBaBIIICFOC$1 paHee npti TelIJIOBOM r p a -  
HHqHOM yCJIOBHII qw = eonst., Hcc~e~jeTca BXIH.qHHe nCpCMeHHMX x a p a g T e p H ~ t g  Ha rlepCHOC H M n y ~  
I~ Tet tna .  HeCMOTp~ Ha TO, qTO OTJXH~e HMeeT M e t r o  TO.rlbgO B Ten .~oa tax  r p a H i ~ m b I x  yc~oem~X, o6a 
c.nyqaa so MHOrXX acnegTax c o s e p m e n a o  pa3.rIHqHM. OCHOBHMM pe3yJEbTaTOM HCcYleHOBaHEm ~BYLqeTCJl 
yCTaHOBJIeHHe ~agTa, qTO 3MlmpHqe~3~tii MeTOfl, HcnoJlb3ycMhtii B O6OHX cylyqasx npH T w ---- const.  He 

JlBJIgC'rca O~ltO3HaqHMM. 


