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Abstract—The effect of variable properties on momentum and heat transfer is investigated applying an

asymptotic method that had been used before with the thermal boundary condition g,, = const. Though

the changes are in the thermal boundary condition only it turns out that both cases are quite different in

several aspects. As a main result it turns out that a method empirically used in both cases (property ratio
method) is not uniquely valid in the T, = const. case of this study.
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1. INTRODUCTION

IN AN EARLIER study {1], the influence of variable
properties on momentum and heat transfer has been
determined for the thermal boundary condition of
constant heat flux across the wall. In this study a
regular perturbation technique was applied with the
final results given in the form of the so-called property
ratio method. This original empirical method ac-
counts for the influence of variable properties by
certain property ratios in the skin friction and Nusselt
number results. For example the skin friction co-

efficient f is
R {ETTET
] [

where f, is the friction factor for constant properties
and subscripts w, B the wall and bulk conditions,
respectively. Applying the perturbation technique the
exponents n, and n, were determined analytically from
the basic equations. For constant wall heat flux the
analytical results compare well with empirically deter-
mined exponents [1].

The objective of the present study is an extension
of the previous work now prescribing a constant wall
temperature downstream of x* = 0, which is different
from the wall temperature of the oncoming isothermal
flow.

The authors expected results that differ quantita-
tively rather than qualitatively compared with those
for g% = const. These expectations were backed by em-
pirical findings. So, for example Kays and Crawford
(p. 279 of ref. [2]) summarize with respect to the ex-
ponents in the property ratio method: “Also there
appears to be little effect due to different types of
thermal boundary conditions”.

The subsequent study will show that this is not true.

tDedicated to Prof. Dr.-Ing. Klaus Gersten on the
occasion of his 60th birthday.

2. FLOW SITUATION; BASIC EQUATIONS

As in the g} = const. case laminar tube flow will be
considered, which is fully developed in the constant
property limit. There are two aspects of the ‘fully
developed’ condition: hydrodynamically it means
that the velocity profile remains unchanged through-
out the whole pipe flow. Thermally fully developed
refers to a flow in which the temperature profile in the
T¥ = const. case meets a condition illustrated in Fig,
1. Downstream of x* = 0, after a certain thermal
adjustment zone all temperature profiles exhibit a
similarity in the defect profile T — T*, which decays
exponentially with x*. It turns out that this condition
holds asymptotically for x* — co only, but for prac-
tical applications it is a good approximation for finite
x*. Further details will be given in Section 5 (equation
(46)).

For the flow under consideration the basic equa-
tions are the Navier-Stokes equations for slender
channels {3].

Neglecting viscous heating (Ma — 0) and buoyancy
forces (Fr — 0) they read, nondimensionalized and
transformed according to Table 1
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NOMENCLATURE
A cross-sectional area x axial coordinate.
A, auxiliary functions, equation (71)
B, auxx!lary functions, equation (72) Greek symbols
c specific heat at constant pressure .
N . o physical property
f friction factor, equation (51) . .
. g perturbation parameter, equation (12)
h specific enthalpy . .
. . . n VISCOSItY
K, dimensionless property, equation (10) ..
. A thermal conductivity
m,,n, exponents, property ratio method A cigenvalue, equation (46)
Nu Nusselt number, equation (52) ! degnsit + €4
P pressure f wall s})llear stress
Pr Prandtl number, equation (7) v ’
Gw wall heat flux
r radial coordinate Subscripts
R pipe radius B bulk
Re Reynolds number, equation (7) cp constant property
T temperature w wall
T reduced temperature, equation (13) 0,1 zero, first order
u,v velocity components o) upstream conditions
U, mean velocity at reference conditions o associated with the property a.

defect profile Ty -T*

isothermal flow
at T*=7%

T*

—
*
X,

w—-l

)

}

| x*
hydrodynamically | hydrodynamically & thermally
fully developed 1 ! tully developed

|
thermal

adjustment
0ne

F1G. 1. Development of the temperature profile, constant
properties.

All variables are nondimensionalized with quantities
at the reference state ‘w’ far downstream (x* — o).

The Reynolds and Prandtl numbers are define with
properties at the reference state

The Prandtl number is left as the only parameter of
equations (1)—(6) since the Reynolds number could
be eliminated as an explicit parameter by the trans-
formation according to Table 1.

3. PHYSICAL PROPERTIES

The physical properties involved in the problem are
viscosity #, density p, thermal conductivity 1, and
specific heat capacity c,. As ¢, is not constant the
energy equation is written in enthalpy A rather than
temperature 7. The relation between 4 and T'is

T

¢,dT. ®)
0

dh=¢c,dT or h=J‘

All these properties are (more or less) pressure and
temperature dependent so that they can be expanded
as a Taylor series at the reference state ‘w’. A general
physical property a (here: 5, p, 1 or c,) then reads

do*
oT*

*
(T -TH+ o

o* =a¥+
P*|w

@*-pH+... 9

It turns out that only the temperature dependence is
of practical importance if we impose the restriction

paUSR* N Che . of small Mach number, i.e. Ma — 0. (For a detailed
Rew=79 Prw=_..~, w S T A% (7) : :
n¥ AX prA* discussion see ref. [1].)
Table 1. Dimensionless, transformed variables (*, dimensionless quantities)
x r u v r T h p n A c,

Xx*/R* Re,, r*/R* u*/U¥

v*Re /Uy p*—p&/pdUs* T*—T3¥T}

W —Rych TS p*lpk  n*md AL cHe),
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Table 2. Variation of physical properties with tem-

perature (T% = 293 K)
K, K, K, K.
Air -1.0 0.70 0.83 0.01
Water —0.06 -7.37 0.75 —0.05
With the dimensionless fluid parameter
T* da*
K, = (F 6_T;>w 10)

the Taylor series (9) then reads (pressure dependence
neglected)
d*

asgg=1+K,T+... (1)
In Table 2 values of K, are listed for air and water.
With temperatures close to the reference temperature
T} the linear approximation of o will be sufficient.
The subsequent theory based on equation (11) is
straightforward, see for example ref. [4].

4. ASYMPTOTIC APPROACH

The perturbation parameter is defined as the start-
ing point of our asymptotic approach. The basic flow,
which will be perturbed asymptotically, is that for
constant properties. Obviously this flow situation pre-
vails for vanishing heat transfer rates, (7% —T%*) — 0.

Therefore, our perturbation parameter ¢ is

T* -
T

&= (12)
In what follows ¢ is assumed to be small with ¢ = 0
for the constant property limit. Deviations from the
constant property case are therefore due to non-zero
values of &. By means of the regular perturbation
technique this can be formulated systematically.

As a first step equation (11) is rewritten as

T T*-T,

— T 2 '___
a=1+eK,T+0(@E?), T =T

13)

According to this expansion all dependent variables
of the problem are assumed to be of a similar form

u=uy+e(Kuy,+K,u,)+0@E) (14)

v =vo+e(K1,+K,v,,)+0(e?) (15)

P =po+e(Kp,+K,pi,)+0(E?) (16)
T=To+ek, T, +K,T,+KT,;

+K.T.)+0@ED. (17

All variables with the index 0, like u,, v, . . ., describe

the constant property solution, those with index 1,
like uy,, vy, ..., are coefficients of the linear (in &)
deviations according to the temperature dependence
of the physical properties.
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The corresponding sets of equations are derived
from the basic equations (1)-(4). After inserting
expansions (13)—(17) terms of equal magnitude (¢X,)”
withn=0,1and a = p, 5, 4, ¢, are collected.

Zero-order system (n = 0, constant properties)

6uo 16

T2 (o) = (18)
0= — aair (20)
wlro = L2 ).
First-order system (n = 1, linear deviations)
%ﬂ+-—§(rv,,)=o @
+%§;(r("’;“" rf;‘:))
0=~ 2u 4)
G o 0 G+
- Flr_w % % (ra;;'") (25)
Bg,,, 41 10 (wlp)
= - <% (Touo)+ ; %(ﬂ_’ovo)> (26)
+1:,(6z:=> o) o
0= -2 28)
Plr ! §r< "Q’) T, (uo "aT" +o ‘fr °) (29)
uo?'aT'Tu Uog%
() oo
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Energy equations (21), (25) and (29)—(31) are rewrit-
ten in temperatures 7;. Evaluating equation (8) with
h = h/e for this purpose gives

h=T, with i=0,1n1p,14 (32)

h‘]L‘:Tlr+%T(z)' (33)

The associated boundary conditions at r =0, 1 and
x > 0 from equations (5) and (6) are

u, =0 = j=0 at r=1,X>0 (34)
ou, oT,

ui=i=4=0 at r=0,x20 (35
or r

i=0,1n1p j=0,1n1p,14,lc.

The initial conditions at x = 0 are

o = 2(1—r?) (36)
U, =0 37
Ujp = —Up (3%)
v;=0; i=0,1n,1p 39)
dpq
e -8 (40)
P _ . . _
5;—0, i=1nlp 41
T,=1 42)
T,=0; j=In1lp, 14 1c. (43)

The zero-order initial conditions (36), (39) and (40)
hold since the constant property flow is hydro-
dynamically fully developed for all locations x. The
zero-order temperature condition (42) holds since
the upstream flow (x < 0) is an isothermal flow at
T* = T* uninfluenced by the temperature jump at
x=0.

For the same reason all first-order initial conditions
are zero with the exception of equation (38), which
is nonzero as a consequence of our choice of reference
state.With T, = 1 the density is p = 1+¢K,+ O(g?) at
x = 0. Inserting this into the integral condition of
constant mass flux

1
2[ purdr =1
4

immediately provides initial condition (38).

(44)
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5. SOLUTIONS

There are five sets of linear (with the exception of
equation (19)) partial differential equations and their
corresponding boundary and initial conditions.

One for constant property flow (zero order) : equa-
tions (18)—(21) together with equations (34)-(36),
(39), (40) and (42).

Four for linear deviations with respect to ¢ (first
order), i.e. one set for each of the four physical prop-
erties 7, p, 4 and ¢,. All equations, boundary and
initial conditions can easily be collected from equa-
tions (22) to (43) according to the appropriate sub-
scripts.

The common solution procedure for the constant
property energy equation is that of separation of vari-
ables which reduces the governing differential equa-
tion (21) to the Sturm-Liouville type. The solution is
then obtained in the form of an infinite series expan-
sion in terms of eigenvalues and eigenfunctions, see
for example p. 100 of Shah and London [5]

Ty =Y Co,Tou(r) exp[—A;x/Pr,]

n=1

(45)

where C,, are constants and A, the corresponding
eigenvalues with respect to the eigenfunctions 7. For
x — oo the first term of the infinite series is dominating
so that the downstream limit of equation (45) reads

Coy = 1.4764

Ty = Co, To\(r) exp [—Afx/Pr,] "A? = 3.6568.

(46)
Our first approach to the first-order equations was
based on the expectation that the exponential x-
dependence in equation (46) would be carried to the
higher order equations. We therefore assumed higher
order solutions of the general form ‘function of r’
times exp [— A?x/Pr,], for example

Uiy =iy, (r)exp[—Aix/Pr,]. G

Actually it is a necessary condition for constant
exponents in the property ratio method that the first-
order velocity functions u,,, u,,, ... are of this general
type (see equation (69) below).

It turned out that this only holds for large Prandt!
numbers (asymptotically for Pr,, — oo, see Section 5.2
below). We therefore solved all equations in a com-
pletely numerical approach. Based on these numerical
solutions we return to our first attempt and try to
interpret its failure by physical arguments in Section
5.2.

One consequence should be mentioned here: con-
stant exponents in the property ratio method (in con-
trast to the g,, = const. case) do not exist for arbitrary
Prandtl numbers!

5.1. Completely numerical approach
The zero-order (constant property) flow solution is
well known in its analytical form

uy = 2(1—r%); Opo/0x = —8. (48)

vo = U]
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F1G. 2. Details of the net rectangle for the Box scheme
difference equations.

All other equations, the zero-order energy equation
(21) and all first-order equations, equations (22)—(31),
were solved by the so-called ‘Box scheme’ method
[6]. This method is implicit with respect to variations
normal to the tube axis and second-order accurate in
all variables on arbitrary non-uniform nets. Though
it was originally applied to boundary layers it is easily
transferred to the tube flow problem.

There have been no stability problems (actually the
scheme is claimed to be unconditionally stable) but
in certain situations slight oscillations around the
smooth solution occurred. They could be suppressed
completely by a very simple ‘trick’ first proposed by
Wickern [7] and afterwards successfully applied to a
great number of different flow situations. It is shortly
explained in Fig. 2. In the conventional Box scheme
the differential equations are approximated by cen-
tring about the midpoint of each box, point C in Fig.
2. As a consequence you easily get oscillations in the
x-directions as may be illustrated by the v-velocity
which should be zero for all x in fully developed flow.
If, by mistake, v is nonzero at x;, say v, the differential
equation is nevertheless fulfilled by its difference
approximation, ifv = —o»™* at x;+ Ax, since the central
difference v = 4(v* +(—v™)) = 0! This problem is cir-
cumvented by shifting the central point from C to C’
(see Fig. 2). Now v = 0 is enforced at x;+Ax and no
oscillations occur. Nothing has to be changed in the
formal system if one proceeds with the following two
steps. (1) Choose a box of twice the x-step size, 2Ax
in Fig. 2. This gives results at x,+2Ax. (2) Take
the mean average of all quantities at x; and x;+ 2Ax,
which provides the unknown quantities at x;+ Ax.

In addition to this procedure the first step out of
x = 0 was accomplished by an analytical Leveque-like
step, see for example Worsoe-Schmidt [8].

As a test case which could also be used to find the
proper grid sizes we could refer to the analytical results
for the g,, = const. case in ref. [1]. The downstream
limit (x — o) for u,,, cf. equation (14), for example
reads [1]

uy, = #H(=2r*+12r*—13r>+3); ¢, = const.
49)

Various test calculations showed that grid size inde-

HHT 32:10-H
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Table 3. Analytical and numerical results for u,, at x/Pr = 3,
thermal boundary condition: g,, = const.

Analytical Percentage

r equation (49) Numerical  deviation (%)
0.0 0.5455 0.5449 0.11
0.2 0.4544 0.4538 0.13
04 0.2216 0.2212 0.18
0.6 —0.0397 —0.0399 0.50
0.8 —0.1689 —-0.1690 0.06
1.0 0.0 0.0 —

pendence (variations of typical, selected quantities
smaller than 10~ %) is given for

Ar<0.02; Ax <0.01Pr,. (50)

In Table 3 the numerical results at x/Pr = 3 are com-
pared with those according to equation (49). Devi-
ations are less than 0.5% which we decided to tolerate
since the analytical results hold for x - co whereas
the numerical results were found at x/Pr = 3 after 300
steps in the x-direction.

Applying this numerical method to the T, = const.
case under consideration provides us with the func-
tions Ty, T\, 41, V1, all x and r dependent with the
Prandtl number as a parameter. To avoid extensive
data documentation we only present the data for
x — oo (fully developed flow) incorporated in the
exponents of the property ratio method—as far as it
is possible to do that.

In the following we show how this can be ac-
complished.

First Newton’s law 73 = n}(du*/dy*),, and Fourier’s
law ¢q¥ = — 1¥(0T*/0y*),, are written in dimension-
less form bearing in mind that 8/dy* = —o/or*,
see Fig. 1 for the coordinates y* and r*. The skin
friction and heat transfer relations in terms of f and
Nu, respectively, are

21 Ou o
f=m— —25;wRew (51)
2q%R* oT| -_
Nu5m= '—ZEWTBI. (52)

Next
u=ug+e(Ku,+K,u,)+0(?), T=To+...

as well as an appropriate expansion for Ty will be
inserted into equations (51) and (52). With T; accord-
ing to equation (17)

TB = TBO +£(K,,T31,1 +KpTBIp +K/l TBU.
+KCTBIC) +0(82) (53)

the asymptotic results for f and Nu follow immedi-
ately. They can be written in a very clearly arranged
form if they are referred to their constant property
limits £, and Nu,, (cf. equations (51) and (52))
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Ouy,
fchew— _ZWW_8 (54)
aTo| -
Nu,, = _27370 Tao' = Nug,(Pr,).  (55)
The final results are
S Re,,
m =1 _E(K,’A,,+K‘,Ap) +O(£2) s
w/cp
1 du,,
Ay=—320 5 a=np (56)
Nu 2
Vo = 1+6(K,B, +K,B, + K;B, + K.B,) +O(")
cp
57
aTla
— ar W_TBIaL' o= AC
" 6T0 T-'BO ’ r” p’ T
or |

The bulk temperatures Ty, and Ty, in equations (56)
and (57) immediately follow from the definition of &

1
he = f puhr dr (58)
0

together with the enthalpy/temperature relations (32)

and (33). Inserting p=po+..., u=1up+... and
# = hy+. .. into equation (58) we obtain
1
Too = 2J uoTordr (59)
0
- ! — -
Ty, = 2L (Touy,+ueTy,)rdr (60)
- 1 - - -
Ty, = 2J; [To(uoTo+u,,)+u, T Jrdr (61)
1
Tou = ZJ uoTy,rdr (62)
0
_ 1
Ty = —%Tgo‘*‘zf (uoT\ . +3uo THrdr. (63)
0

From the final results, equations (56) and (57), we
find the exponents of the property ratio method by
comparing these equations with the property ratio

formulae

i

(fRey)y \n&/ \PB
Nu__ (na\n(p e (A8 (et Y
-GGG @

Incorporating the following expansion for a general
property a*:

64
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ok -
| =t = [1+eK, T
ag

+0(E)] " = 1-¢eK,Taf+0(*) (66)

the property ratio formulae in their asymptotic ver-
sions are

f Re, - o
m =1 —s(n,,K,,TBO+nPKPTBO) +0(6 )
(67)
Nu - -
Nugy = 1 —e(m,K, Tyo+m,K, Ty,
+m,K; Tno +m.K, Tno) + 0(32)- (68)

Comparing equations (64), (67) and (65), (68), respec-
tively, provides us with the exponents of the property
ratio method (for a detailed discussion of higher order
effects see ref. [1])

1 Ouy, .
n, —-m ar | with a = n,p (69)
T\,
TBla ar W .
m,=— —————— witha=1,p,4,c. (70
T2 o - 1P (70)
™

As mentioned before not all exponents »n,, m, turned
out to be constants for a fixed Prandtl number in
the limit x — 0. For Prandtl numbers above about
Pr,, = 0.5 all are constants. Below a Prandtl number
of about 0.5 the exponents #n,, m, and n,, m, are x-
dependent, the stronger the lower the Prandtl number
is.

In Table 4 the exponents are listed for Prandtl num-
bers greater than Pr,, = 0.5. Comparing them with the
9., = const. case in ref. [1] shows that they all have the
same sign in both cases and most of them differ by
less than about 20%. (For comparing n,, n, and m;
note that the definitions of the exponents must be
rearranged according to the definitions of 7 and Nu
in ref. [1].)

For Prandtl numbers below about Pr = 0.5 the
numerical results showed a decreasing tendency for
constant values of the exponents n,, m,, n, and
m, in the downstream limit x — oo (which for all
other exponents was reached numerically at about
x/Pr, = 3). In Fig. 3 the exponents n, and m, are
shown for decreasing Prandtl numbers, those for the
density (n,, m,) exhibit the same trends.

As a consequence we must conclude that the
property ratio method—which assumes x-indepen-
dent exponents—fails for Prandtl numbers below
Pr,, ~ 0.5in the T,, = const. case. From an asymptotic
point of view things are even more restrictive, since
the property ratio method only holds in the limit of
Pr,, - oo asymptotically as we will try to verify in the
following section.
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Table 4. Exponents in the property ratio method for 7% = const., equations

(69) and (70)
Pr, n, n, m, m, m; m,
-0 —0.4191 1.0000 —0.1225 0.3286
100 —0.4197 0.9972 —0.1228 0.3277
10 —0.4262 0.9720 —0.1253 0.3196
5 —0.4329 0.9425 —0.1282 0.3102 1 )
2 —0.4554 0.8467 —0.1376 0.2788 —0.7743 0.2743
1 —0.5014 0.6597 —0.1569 0.2149 l 1
0.7 —0.5524 0.4610 —0.1786 0.1435
0.5 —0.6475 0.1073 —0.2196 0.0097

For low Prandtl numbers the influence of variable
properties cannot be represented by constant ex-
ponents, so that the property ratio method is not
adequate. Instead one should go back to the final
results (56) and (57), respectively, which for con-
venience will be rewritten as

S Re,
— " =14¢Y K,A4,(x, Pr,)+0(%;
(f Re.) Z
A, according to equation (56) an
Nu
= 1+¢) K,B,(x, Pr,)+O0(e?);
Nu, "
B, according to equation (57). (72)
0 1 2 3 4 5
pr ]
N 3
- 04
el 1
! s S — 0.3
B Ny
2 ~ed
"""" 4-... 025
-3
x/Pr
0® 1 2 3 4 s
Pr::—i
. QIL
-04 “:\_ R S— S
A My
-08 B
''''''''''' 025
1.2
x/Pr
FiG. 3. Property ratio exponents n,, m, for Prandtl numbers

Pr, < 0.5.

In Fig. 4 the auxiliary functions 4, and B, are given
for the small Prandtl numbers, Pr = 0.1, 0.05, 0.01.
Those for B; and B, collapse for all Prandt! numbers.
(A careful study of this phenomena leads to the fact
that m,; and m, are constants for all Prandti numbers
and x — oo in contrast to what holds for n and p.
The reason is that there are no first-order momentum
equations for A and ¢, see also Table 4.)

5.2. Separation of variables approach

At the beginning of Section S we mentioned our
first assumption that the zero-order x-dependence of
the temperature T, is carried to the higher order equa-
tions. This assumption is supported by equation (69)
for example. The exponents #, and n, can be inde-
pendent of x only if u,,, u,, exhibit the same x-depen-
dence as Ty, i.e. exp[—A%x/Pr.].

As an example we will illustrate the determination
of n, based on the assumption of a unique x-depen-
dence of all zero- and first-order quantities. According
to this approach we assume (A? = 3.6568)

Uy, =, (r)exp [—Aix/Pr,) (73)
U1y = Viy(r) exp [~ Alx/Pr,) (74
Pn _ ¢, exp [~ Aix/Pr.). (75)

Inserting equations (73)—(75) together with equation
(46) for T, into the first-order momentum equation,
equation (23), results in an ordinary differential equa-

tion for i@,,(r)
A2 r
(— ZF'_:I) [(1 -, +2J; ﬁ,,,rdr:l

= C,+[ri, —4Co,r*ToY/r. (76)
Here a prime denotes a derivative with respect to r,
the integral on the left-hand side comes in through
continuity equation (22). The boundary conditions
are

(7
(78)

ﬁl,,=0 atr=1

Oy, /0r=0 atr=0.
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F1G. 4. Auxiliary functions 4,, 4, and B,, B,, B;, B, ; see equations (71) and (72).

The constant C‘,, is determined through the integral
condition of the constant mass flux which in its asymp-
totic form imposes the condition

1
f i, rdr=0
0

on the velocity #,,,.

Solving equation (76) by a standard Runge-Kutta
technique for ordinary differential equations is
straightforward as soon as a specific Prandtl number
is fixed. With #,,(r) we can immediately calculate n,
according to equation (69). In Fig. 5 the results are
compared with those from the completely numerical
approach of the previous section. For moderate and
large Prandtl numbers (Pr > 0.5) the agreement is
very good.

For Pr, = 10, for example, n, differs by less than
0.2% (n, = —0.4262 from the numerical approach
and #n, = —0.4254 based on the solution of equation
(76)).

For small Prandtl numbers assumptions (73)—(75)
fail completely which result in a somewhat curious
solution of equation (76) with a sequence of singular
points for decreasing Prandtl numbers. From our

(79

numerical results in Section 5.1 we known that for low
Prandtl numbers «,, does not behave according to
assumptions (73)—(75). But what is the physical
reason for that?

The first-order momentum equation (76) explicitly
shows the main Prandtl number influence. It comes
in through the inertia forces on the left-hand side
of the momentum equation. For moderate to high
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Prandtl numbers the inertia forces are small compared
with the pressure and viscous forces on the right-
hand side. For an infinite Prandt! number they vanish
completely since they are of the order of O(Pr;").
Obviously the first-order solutions are of the assumed
type (73)—(75) as long as the balance of forces is that
between pressure and viscous forces, with negligible
inertia forces. The solution for u,, is no longer the
product of an x- and r-dependent part when inertia
forces have to be accounted for, obviously because
inertia forces cannot be constant over the cross-
section of a pipe. They are zero at the wall and non-
zero away from the wall.

From these considerations we conclude that strictly
speaking constant property exponents only exist in
the limit Pr; ! = 0, i.e. for an infinite Prandtl number.
For Prandtl numbers above 0.5 the influence of the
inertia forces is small enough that the exponents are
not effected within the accuracy limits of Table 4 or
Fig. 5. So for practical applications they can be used
as ‘nearly constant’.

6. CONCLUSIONS

In this study we extended a method to account
for variable property effects to the thermal boundary
condition T} = const. In an earlier study laminar
tube flow was investigated for the boundary condition
g* =const. In that study a well-known empirical
method, the property ratio method, was established
as an analytical method [1].

Now it turned out that this method can be applied
in the T* = const. case only under certain conditions.

1915

For practical applications it may be a useful method
with Prandtl numbers above about 0.5. For smaller
Prandtl numbers it is no longer adequate and for
Prandtl numbers as small as those for liquid metals
(Pr =~ 107%) it fails completely.

This conclusion could only be drawn on the basis
of an analytical analysis of the empirical method.
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EFFET DES PROPRIETES VARIABLES SUR LE TRANSFERT DE QUANTITE DE
MOUVEMENT ET DE CHALEUR DANS UN TUBE A TEMPERATURE PARIETALE
CONSTANTE

Résumé—On étudie I'effet des propriétés variables sur le transfert de quantité de mouvement et de chaleur

en appliquant une méthode asymptotique déja utilisée avec la condition limite thermique g,, = const. Bien

que les changements sont seulement dans les conditions aux limites, les deux cas sont trés différents sous

divers aspects. La méthode empirique utilisée dans les deux cas (méthodes du rapport de propriété) n’est
pas uniquement valable dans le cas T, = const. de cette étude.

DER EINFLUSS VARIABLER STOFFEIGENSCHAFTEN AUF IMPULS- UND
WARMEUBERTRAGUNG IN EINEM ROHR MIT KONSTANTER
WANDTEMPERATUR

Zusammenfassung—M it einer asymptotischen Methode, die bisher bei konstanter Wirmestromdichte
verwendet worden ist, wird nun der EinfluB variabler Stoffeigenschaften auf Impuls- und Wérme-
iibertragung bei konstanter Wandtemperatur untersucht. Obwohl die Anderungen nur in der Wahl der
thermischen Randbedingungen bestehen, ergibt sich, daf} beide Fille in unterschiedlicher Hinsicht sehr
verschieden sind. Als ein Hauptergebnis erweist sich, daB eine in beiden Fillen empirisch genutzte Methode
(Methode der Stoffwert-Verhéltnisse) in dem hier betrachteten Fall T, = const. eindeutig nicht giiltig ist.

BJIUSHUE NMEPEMEHHBIX XAPAKTEPUCTUK HA TEPEHOC UMIIVJIbCA U TEIUIA B
TPYEE C NMOCTOAHHON TEMITEPATYPOY CTEHOK

Amoraims—C TOMOLBIO ACHMIITOTHYECKOTO METOAA, HCIOMBL30BABLIETOCH PaHee NPH TEIIOBOM Ipa-

HHYHOM YCIIOBHH g, = CONSt., ACCIEAyETC BIHAHHE NEPEMEHHBIX XaPaKTEPHCTHK Ha NEPEHOC HMITYJIbCa

H Terwia. HecMOTps Ha TO, ¥TO OT/IMYHE HMEET MECTO TOJLKO B TEIUIOBHIX IDaHHYHEIX YCIOBHSX, 06a

C/lyyasi BO MHOTHX ACTIEKTaX COBEPINEHHO Pa3’THyHbL. OCHOBHEIM Pe3yJNbTaTOM HCCIEAOBAHHS ABMSETCS

ycTaHOBJicHHe (axTa, 9TO IMIHPHYECKHH METOM, HCIIONb3yeMElit B 06onx caydasx npu T, = const. He
ABJIAETCHA OJHO3IHAYHBIM.



